

ROTO MOLDING INDUSTRY

THE ROTO PROCESS MUST EVOLVE AND ADVANCE

Competitive processes, demanding applications, automation opportunities, work force availability...

INTRODUCTIONS

Centro Inc. R&D

Dan Grimes – Advanced Technology & Resin Leader Shawn Trosen – R&D Intern

XLPE FROM ART TO SCIENCE

Deep dive

INPUTS

Operator Components Water Temp Time Speed Tools Trim Resin Mold Gauges Powder Fixtures Line Weight Clamps

black art

OUTPUTS

Go/No-Go Color Graphic Torque Size **Properties** Cure Trim Gloss

INPUTS

Operator Components Water Temp Time Speed Tools Trim Powder Fixtures Line Weight Clamps

ADD AN ENGINE TO THE FUEL

PROCESS OPTIMIZATION

Internal Temp Simulation and Process Optimization

The Degree of Cure: First stop in the journey

```
[FileName, PathName] = uigetfile({'*.xls;*.xlsx','Data Files (*.xls,*.xlsx)';'*.*','All Files (*.*)'}, ...
   'Pick a File');
10 [FileName, PathName] = uigetfile({'*.xls;*.xlsx', 'Data Files (*.xls,*.xlsx)';'*.*', 'All Files (*.*)'}, ...
    'Pick Another File', PathName);
13 A = [PathName, FileName];
14 sheet = input("choose worksheet:\t");
15 colrows = input("choose column and rows format example-- A2:A20:\t",'s');
17 m = xlsread(A, sheet, colrows);
18
20 ##possible convection terms later
21 ##grashof = (9.81 .* .00343 .* (100 .- 25) .* .0094488 .^3) ./ (.0000189 .^2);
23 WhichCol = input ("Which columns are needed in array time first temp second --- format--- [xcolumn #, ycolumn #
25 fill = m(:, WhichCol);
27 x = fill(:, 1);
y = fill(:, 2);
30 k = 1
32 while k != 0
34 k = input("press 1 to go 0 to stop");
36 D = input('choose derivative to use generally 3 ---');
37 Stddev = input('choose standard of deviation of data (2.1 - 3.9 usually accurate) ---');
39 [yhat, Lambda] = regdatasmooth(x, y, 'd', D, 'stdev', Stddev);
40
41
```


Heating Rates:

Rates of change give insight

Heating rate vs time $\Delta log(T)/t$

Mold Specific Testing:

A Wealth of Knowledge

The DSC: Using Differential Scanning Calorimetry to Quantify Melting

Fourier's Heat Equation:

Including Two Temperature Dependent Sources

Solving:

The Hard Part: Control Volume Discretization

$$\begin{bmatrix} In + Acc. & -Out & 0 & 0 \\ -Out & In + Acc. & \ddots & \vdots \\ 0 & \ddots & \ddots & -Out \\ 0 & \dots & -Out & In + Acc \end{bmatrix}^{-1} \begin{bmatrix} T_1 \\ T_2 \\ \vdots \\ T_n \end{bmatrix} = T Sol'n$$

Solving:

The Hard Part: Differencing

scheme

Series expansions for finite differencing

$$\left[u(t+\Delta t) = u(t) + \frac{du(t)}{dt}(\Delta t)\right] \dots \frac{1}{2!} \frac{d^2 u(t)}{dt^2} (\Delta t)^2$$

$$\frac{du(t)}{dt} = \frac{u(t + \Delta t) - u(t)}{\Delta t}$$

$$\left[u(x + \Delta x) = u(x) + \frac{du(x)}{dx} (\Delta x) + \frac{1}{2!} \frac{d^2 u(x)}{dx^2} (\Delta x)^2 \right] \quad \left[u(x - \Delta x) = u(x) - \frac{du(x)}{dx} (\Delta x) + \frac{1}{2!} \frac{d^2 u(x)}{dx^2} (\Delta x)^2 \right]$$

$$\frac{d^2u(x)}{dx^2} = \frac{u(x+\Delta x) - 2u(x) + u(x-\Delta x)}{2! (\Delta x)^2}$$

DEMONSTRATION IS WORTH A THOUSAND WORDS

Let's see it in action.

What's the POINT?

POTENTIAL USE IDEAS

THANK YOU!

Any questions?

You can reach me at dgrimes@centroinc.com

RECOGNITIONS

Steve Harkin and Mike Cairy - Centro Inc. R&D Techs who helped generate mountains of data to provide the "fuel"

CREDITS

Special thanks to all the people who made and released these awesome resources for free:

Presentation template by SlidesCarnival

Photographs by Death to the Stock Photo (license)